
APPLYING DATA RECONCILIATION AND THE DIAGNOSTIC MODEL
PROCESSOR TO A PAPER MACHINE

David I. Wilson
Engineering Research Institute

Auckland University of Technology,
New Zealand

email: diwilson@aut.ac.nz

ABSTRACT
This paper compares the techniques of Data Reconciliation
and the Diagnostic Model Processor applied to an indus-
trial full scale two-ply paper machine using actual operat-
ing data. Data reconciliation optimally adjusts the raw data
to satisfy known constraints whilst simultaneously identi-
fying gross errors. The DMP searches for faults that create
the observed discrepancies in these constraint equations.
The DR strategy worked well, reconciling the raw measure-
ments and correctly identifying gross errors while the DMP
was over enthusiastic in its attempts to identify assumption
violations.
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1 Introduction

The trend in a competitive industry is to continually im-
prove and optimise production and the efficient manage-
ment of information is an important factor to achieve
this. Given the ability for a Distributed Control Systems
(DCS)to generate vast amounts of data, it is crucial that
this data be compacted, so only essential validated infor-
mation is used to schedule, control and monitor a complex
industrial operation.

While techniques for compacting, reconciling and
extracting information from raw data are not new, and
notwithstanding some applications such as that reported in
[1] and [2], it appears that in many processing plants, raw
measured data is simply stored in the historian until a peri-
odic purge occurs. Given that key production data used for
planning is rarely reconciled with the less important data,
any errors due to transducer or mechanical failure are un-
likely to be identified. Avoiding this potentially dangerous
situation is the aim behind the optimal treatment of mea-
sured data. Even when the raw data does not seem to have
an immediate value, combined with a model, it is possi-
ble to generate an improved data set, thus strengthening the
value and confidence of the data.

This paper considers two different techniques for
processing the raw data, Data Reconciliation (DR) and the
Diagnostic Model Processor (DMP), [3].

2 A two-ply paper machine

Fig. 1 shows a simplified schematic of a two-ply paper
board machine at Gruvön Mill in central Sweden.

The flow and concentration of long and short pulp
fibers are measured by magnetic flow and pulp consistency
meters respectively. The almost dry finished product is
analysed for moisture and basis weight using a Measurex
radioactive scanner. The flowrate of water removed first by
vacuum through the wire, and then later by heated rollers is
unmeasured, and essentially unmeasurable. This excludes
the possibility of a full mass balance across the machine.
Nominal operating values for the key process measure-
ments to be reconciled are given in Table 1.

Table 1. The 10 logged variables to be reconciled

Description value
fs short fibre flow 153 ton/hr
fl long fibre flow 76 ton/hr
cb conc. after chest (bot.) 2.82 %
fb mass flow after chest (bot.) 3954.0 1/min
ct conc. after chest (top) 3.45 %
ft mass flow after chest (top.) 1868.0 1/min
w basis weight 152.9 g/m2

v machine speed 310.3 m/min
m̄ average moisture profile 7.0 %
p production rate 12.25 ton/hr

Paper machines are a challenge to any data manage-
ment system due to the frequent paper breaks, and grade
changes indicated by the operating data trended in Fig. 2.
Consequently this is an appropriate data set to trial data
reconciliation and diagnostics on a full scale, important in-
dustrial process.

2.1 Data reconciliation

In the linear data reconciliation problem, [4], we wish to es-
tablish a set of reconciled measurements,x, given possibly
erroneous raw measured data,x̂, to minimise the weighted
squared residual

J = (x − x̂)T Q−1(x − x̂) (1)



U U

Moving wire

top layer

ft, ct
fb, cb

water

� U ?

short fibre, fs

?

?
recycle water

︷ ︸︸ ︷
Measurex
scanning
system

bottom layer

Wsteam

Press section & dry end

m̄, w

6

p, v

long fibre, fl

Wret

Figure 1. A simplified process flow schematic of the two-
layer paper machine.

Figure 2. Top and bottom sheet flows to the paper machine
showing the frequency of the machine stoppages.

whereQ is a weighting matrix often chosen as the covari-
ance matrix of the anticipated uncertainties inx, subject to
the constraints

Ax = b (2)

which could include structurally exact mass and energy
balance relations, or perhaps regressions from equipment
manufacturer’s data where we have less confidence. The
solution to this constrained optimisation problem is well
known, [5],

x = x̂QAT
(

AQAT
)
−1

(b − Ax̂) (3)

but in realistic cases, the constraint equations will be non-
linear, particularly in the case of energy balances, compro-
mising this closed form solution.

2.2 Estimating variances from industrial operating
data

The key tuning parameter in the DR strategy is the weight-
ing matrixQ in Eqn. 1 and is typically set to the noise co-
variance of the measurements, but should additionally re-
flect the relative importance of the measurements.

In industrial applications, it is rare to use anything
other than a diagonal covariance matrix, but in many cases
the measurement noise is strongly correlated, particularly

in the situations where many of the so-called raw measure-
ments are themselves derived from more basic, but inacces-
sible measurements such as in the proprietary basis weight
and moisture scanning systems commonly used on paper
machines.

Furthermore it is difficult to estimateQ under indus-
trial operation. Fig. 3(a) shows the average moisture sam-
pled every 12 minutes over 160 hours. This trended vari-
able shows periods ofno noise, periods of noise that would
seem reasonable of this industrial measurement, and peri-
ods where either the reading is faulty, or the machine is
stopped. Using all the data in Fig. 3(a) blindly gives a poor
estimate of the instrument noise.

Even if only periods containing ‘reasonable’ noise are
considered, it is evident from the portion shown in Fig. 3(b)
that this typical operating data is still not normally distrib-
uted, in part due to the presence of excessive outliers. The
Jarque-Bera statistical test applied with a confidence level
of 95% confirms that this data was not drawn from a nor-
mal distribution. This non-normality in key measurements
presents a further challenge to the standard DR strategy.

(a) A plot of the average moisture from Paper Machine #1.
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(b) A zoomed portion used for a covariance calculation showing the±1σ

limits and the substantial deviation from normality in the distribution of
the data.

Figure 3. The variability of the average moisture content
during steady operation.

Note that in order for the inverse of the covariance
matrixQ to exist, all measurements must have some (non-
zero) error. While this is not an unreasonable assumption,
those measurements that are known to an extremely high



degree of precision can be removed from the optimisation
problem.

2.3 Gross error detection

The problem with data reconciliation is that the strategy is
based on the assumption of a Gaussian error distribution
for the residuals and will likely fail catastrophically in the
presence of measurement bias, process leaks or abnormal
variances which are collectively known as gross errors. To
a lesser degree, we know it will perform sub-optimally in
the presence of benign, but still non-normally distributed
noise, as exhibited by the moisture reading from the scan-
ner shown in section 2.2.

But identifying gross errors in non-trivial applications
requires a prior data reconciliation step which leads natu-
rally to an iterative procedure such as the Modified Iterative
Measurement Technique (MIMT) proposed by [6].

1. Reconcile the data and compute the measurement
residual vector,ε = |x − x̂|.

2. For each residual compare the statisticzi = εi/σi

whereσ
def
=

√

diag(Q)

3. Considerεi a gross error ifzi lies outside the sta-
tistically probable region with anα confidence limit,
zi > N(α), where sayα = 0.05.

There are many variants to this basic scheme as surveyed
by [7, 8], which in turn borrows from strategies employed
in robust statistics such as iteratively re-weighted least
squares, [9].

3 The diagnostic model processor

The diagnostic model processor (DMP) developed in [3],
is a generalised fault diagnostic tool which, like the data
reconciliation scheme, uses the constraint residuals as a
pointer to possible violated assumptions. Each constraint
residual,ei is transformed to a normalised residual of the
form

εi =
(ei/τi)

ζ

1 + (ei/τi)ζ
(4)

whereτ is a tuning factor, and shape factorζ = 4 is rec-
ommended. The DMP scheme generates a vector of failure
likelihoods,f , for each of then assumptions. For theith
assumption,

fi =

∑n

j=1
sijεj

∑n

j=1
|sij |

=
(Sε)i

rowsum(S)i

(5)

whereS is the sensitivity matrix quantifying how depen-
dent a particular equation is on a particular assumption.
Ideally the only nonzero elements inf are the true faults,
although in practice a cut-off limit of 0.5 is recommended
to avoid false positives.

4 Data reconciliation around the paper ma-
chine

A full mass balance around the machine is

fs + fl + W1 + W2 = Wsteam+ Wret + wv
(

1 −
m̄

100

)

4.3

(6)
where the width of the paper is 4.3m. Unfortunately Eqn. 6
is impractical since the recycle water,Wret, and evapora-
tion, Wsteam, flows are on this machine unmeasured. Note
that the dilution flows,W1 andW2, to the machine chests
are measured. However a dry material balance gives

fbcb + ftct = wv
(

1 −
m̄

100

)

4.3 = p
(

1 −
m̄

100

)

(7)

Ideally the three terms in Eqn. 7 should all exactly equate,
but Fig. 4 shows in reality there is a small fibre gain (!) if
the raw data is to be believed uncritically. This highlights
the need for data reconciliation.
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Figure 4. A fibre balance showing the three supposedly
equal terms from Eqn. 7.

To maintain the correct board composition, the flow
rates are ratio controlled and the fibre flows are kept at a
high concentration to avoid large pumps and buffer stor-
age vessels up until just before the paper machine where
is is diluted. Combining these constraints to the fiber bal-
ance constraints gives us six constraint equations (in units
as given in Table 1) as

fb

cb

100
+ ft

ct

100
− v

wb

103

(

1 −
m̄

100

)

4.3 = 0 (8)

4.3v
wb

103
− 16.67p = 0 (9)

fb − 2ft = 0 (10)

fs − 2fl = 0 (11)

fb − 25fs = 0 (12)

ft − 25fl = 0 (13)

Using data reconciliation, we wish to establish the optimal
n = 10 measurements which satisfy them = 6 nonlin-
ear constraint equations. This can be solved using any un-
constrained nonlinear optimiser by incorporating Lagrange
multipliers.

Fig. 5 trends both the raw measured data with the
reconciled values over a period of 35 hours. In this case



the reconciliation is not performed using a dynamic model
because the update time of 12 minutes is far outside the
dominant dynamics of the plant as established in [10]
so a pseudo steady-state is assumed. The tradeoff when
rigourously satisfying the constraints is that the reconciled
data is far less smooth than the raw data. In this application
the mill operating staff were surprised, and a little disap-
pointed, in this consequence.
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Figure 5. The raw (heavy) and reconciled (light) short and
long fibre flowrates for part of the data series.

4.1 Gross error detection

Fig. 6 shows a gross error att = −123.8 hours when the
concentration transducer after the machine chest to the bot-
tom layer failed. Instead of concentration reading of around
3%, thecb reading jumped to over 40%. At that instance,
the raw measured data, the reconciled data and the failure
vector for this point are given in Table 2.

The DR strategy outlined in section 2.3 correctly
identified the gross error,�, in this instance. However one
must take care in solving the nonlinear optimisation prob-
lem to linearise about the immediate previous point where
it is assumed that there are no unidentified gross errors, and
that the operating point has not substantially changed. If
the linearisation is performed about the current point, the
as yet unidentified gross errors tend to destroy the lineari-
sation which subsequently causes the DR strategy to deliver
unreliable results.

Conversely, while the DMP analysis correctly shows
the failure ofcb, the method also asserts other measure-

Figure 6. Flow and concentration measurements showing
the gross error in the fibre concentration measurement after
the machine chest to the bottom layer,cb, at t = −124
hours.

Table 2. The raw data,̂x, the associated failure vector,f ,
reconciled data,x, and gross error detection results for a
single gross error suspected incb.

x̂ f x OK ?
fs 157.98 0.05 160.68
fl 82.06 0.93 80.34 �

cb 43.78 1.00 3.01 �

fb 3806 -0.10 4017
ct 3.45 1.00 3.45 �

ft 2006 0.2 2008.5
w 153.1 -0.48 153.05
v 310.3 -0.48 310.25
m̄ 7.08 1.00 7.08 �

p 12.25 0.00 12.25

ments such asfl, ct andm̄ to have failed (indicated as a�
in Table 2). In this particular case, this is unlikely. This
demonstrates that the nonlinear DMP works well if all the
values are nearly correct, but tends to over exaggerate the
problems if even one gross error exists.

Fig. 7 trends all the elements of the failure vector over
50 hours. Clearly it is rare that the DMP algorithm is ever
completely satisfied that there are no violated assumptions.

5 A comparison between DR & DMP

Data reconciliation and the DMP have different aims. Data
reconciliation produces a reconciled data set, possibly with
an extra set of severely suspect measurements. The DMP
identifies violated assumptions but it does not attempt to
calculate a reconciled data set.

In the paper machine application presented in this pa-
per, the less computationally demanding DMP strategy had



Figure 7. The failure vector trended over time. Anything
within ±0.5 is deemed acceptable.

trouble isolating the one known fault as compared to the
data reconciliation strategy with could identify the correct
fault, and then subsequently go on to reconcile the values.
However published reports indicateboth strategies tend to
identify too many gross errors which is probably due to the
fact that most automated ways of determining the variance
of real data gives values that are too small and the nonlin-
earities are ignored.

Both schemes require tuning to provide informative
results. In the case of DR, the tuning involves the selection
of the co-variance matrix while for the DMP scheme, one
must select theτ vector. Of the two schemes, selecting a
suitableQ proved more difficult than just setting a diagonal
matrix proportional to the estimates of the individual trans-
ducer variances. One explanation of the excessive variance
exhibited in the reconciled variables in Fig. 5 compared to
the raw measurements is that the some of the elements in
the weighting matrix are too small, perhaps due to an overly
optimistic view of the quality of the transducer. This would
have the effect that some of the variables are prevented
from deviating too far from their raw values, which in turn
would force other measurements to excessive deviations in
order to satisfy the required constraints.

Both schemes as presented assume pseudo steady-
state conditions, although modifications have been devel-
oped for dynamic systems. In this case, the update time
of 12 minutes is well outside the dominant time constants
of the paper machine. In paper production, the periods
of unsteady-state operation are always carefully monitored,
and the products are recycled.

6 Conclusions

The data reconciliation strategy applied to a two-ply paper
machine using actual operating data was reasonably suc-
cessful. The strategy could reconcile the data, (although

admittedly by introducing what some operators might con-
sider excessive variation in the measured variables), and the
strategy could correctly identify actual gross errors.

The diagnostic model processor was less successful.
The strategy over estimated the incidents of faults and the
tuning is less transparent than that for DR. However the
computation is considerably easier and more robust.
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