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Abstract— Until recently, the motivation for assessing closed-
loop performance was to evaluate the effect of the controller
on the output variation of linear systems. Far less has been
written on assessing the multivariate noise case for nonlinear
dynamic systems. In this paper, we develop a strategy to
quantify the effects of different types of noise on nonlinear
dynamic systems using an ANOVA-like decomposition method.
We test the proposed strategy using nonlinear autoregressive
moving average models which represent an important class of
nonlinear systems. To reduce the computational burden, we
use the Fourier Amplitude Sensitivity Test (FAST) method to
estimate the partial variances which we can compare with
the less efficient Monte-Carlo strategy. The results of this
paper can be used in investment problems, biomathematics and
control theory where multivariate disturbances are frequently
encountered.

I. INTRODUCTION

Analysis of variance (ANOVA) refers to the task of
decomposing the variance of a response variable into contri-
butions arising from the inputs, and assessing the magnitude
and significance of each of their contributions. It has been
successfully applied in control performance analysis, [1, 2]
and extended for nonlinear systems in [3–5].

Traditionally the systems under consideration were static,
but recently practitioners interested in variance decomposi-
tion have focused on dynamic systems such as the time series
[6, 7], and univariate and multivariate linear dynamic sys-
tems. Analytical solutions for the linear univariate case were
given by [8], while [9] extended this to include multivariate
linear systems.

Not surprisingly far less has been written on assessing
multivariate disturbance effects on the process performance
for nonlinear systems due to the difficulty of adequately
generalizing the complex structures of the nonlinear systems
and subsequently solving them.

In this paper, we establish the contribution from stochastic
input signals on the output variance of a nonlinear ARMA
system. Knowing how the output varies with respect to
variations of the disturbances yields insight into the behavior
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of the model and can assist the closed-loop performance as-
sessment or variance reduction. For example, if a process has
an additional measurement of some component of the dis-
turbances, control engineers could use this extra information
to improve the process performance such as implementation
of feed-forward control or disturbance reduction. But before
doing that, they must conduct an analysis of variance or
variance decomposition.

For the purposes of this paper, we consider two types of
disturbances: dynamic disturbances, ξ, which act directly on
the dynamics, and measurement disturbances, ε, which are
only added to the dynamics.

For linear systems the decomposition of the variance is
achieved by the Impulse Response Function (IRF). However
this strategy is not in general applicable for nonlinear sys-
tems, motivating [10] to derive an ANOVA-like decomposi-
tion for nonlinear static systems which is further developed
in this paper to take into account the time dependence and
initial conditions (ICs) of the underlying nonlinearities.

For the output of a static system represented as an analytic
function of input variables, e.g., Y = f(X1,X2, · · · ,Xp),
the relative importance of the independent inputs can be
quantified by the fractional variance which is defined as
the fractional contribution to the output variance due to
the uncertainties in inputs. This can be calculated using
an ANOVA-like decomposition formula for the total output
variance Var(Y ) [11, 12]:

V = Var(Y ) =
∑

i

Vi +
∑

i

∑

j>i

Vij + · · · + V12···p (1)

where Vi = Var(E(Y |Xi = xi)) and

Vij =Var (E(Y |Xi = xi,Xj = xj))

− Var(E(Y |Xi = xi)) − Var(E(Y |Xj = xj)) (2)

and so on, where E(Y |Xi = xi) denotes the expectation of
Y conditioned on Xi having a fixed value xi, and V stands
for variance over all the possible values of xi.

The layout of this paper is as follows. In Section II,
we consider a general nonlinear input-output model with
multivariate disturbances and introduce a strategy for the
variance decomposition. Two modifications of the ANOVA-
like decomposition method are addressed. In Section III,
two simulation examples are used to illustrate the essential
features of the proposed methods. The paper concludes with
a description of outstanding issues and limitations of the
proposed methodology.
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II. VARIANCE DECOMPOSITION OF NONLINEAR ARMA
MODELS

In this paper we are interested in nonlinear systems that
are affected by both dynamic and measurement disturbances.
Given the richness of behaviour that nonlinear systems can
exhibit, for pragmatic reasons we restrict our attention to
nonlinear input/output models such as the nonlinear autore-
gressive moving average with exogenous input shown in Fig.
1, (NARMAX) [13], described as

Yt = f(Yt−1, Ut−b, ξ1,t, · · · , ξnξ,t, ε1,t, · · · , εna,t) (3)

where the dynamic disturbance terms ξ, and the measurement
disturbance terms ε, are assumed to be identically indepen-
dent distributed (iid) variables with mean zero and variance
σ2

ξi
and σ2

εi
respectively.

Yt

- -f(·)U -

?

ε

?

ξ

Nonlinear plant
�

Dynamic & measurement
disturbances

q−1

Fig. 1. The nonlinear model with dynamic and static measurement
disturbances

A specific class of nonlinear model where there are
stochastic coefficients is known as a random coefficient
autoregressive model of order k, RCA(k) [13]. Such a model
is used as a test case subsequently in section III-A.

A. Variance Decomposition

Although the nonlinear stochastic systems represented in
Eq. (3) have been studied in some depth in the control and
identification theory literature (e.g., [14–17]), the statistical
analysis of these models is still in its infancy.

For linear systems, the effect of a disturbance can always
be represented as an additive output disturbance regardless
of where it actually appears in the system. For nonlinear
systems however where superposition does not hold, quanti-
fying the amount of disturbance becomes system dependent.
However in the special case where the disturbances are
measured, [18] quantifies the extent of the disturbance in the
case of known dynamics, and [19] for the case of unknown
dynamics.

For discussion simplicity, no driving-force in the dynamic
system (which is often referred to the stochastic control
problem) is considered initially in this paper. The extension
to the more general situation is straightforward and will be
illustrated by a simulation of a Volterra series model with
two additive linear disturbances in section III-B.

An NARMA process with p different sources of distur-
bances ai,t for the single output case is

Yt = f(Yt−1,a1,t, · · · ,ap,t) (4)

where the vectors Yt−1
def
= [Yt−1, · · · , Yt−ny

] and

ai,t
def
= [ai,t, · · · , ai,t−nai

] collect old values. (Here ai,t

are used to present both dynamic and measurement
disturbances).

To decompose the variance of the nonlinear process using
the proposed strategy, we need the following assumptions:

• Eq. (4) can be solved numerically subject to the
initial conditions, I0, to give Yt for any choice of
a1,t, · · · , ap,t.

• the different disturbances are uncorrelated.
• for each source of disturbance ai,t i = 1, 2, · · · , p,

ai,t t = 1, 2, · · · are independent identically dis-
tributed (iid).

• the disturbances entering the systems after time t = 0
and the initial conditions I0 are independent.

• the initial conditions vector I0 is a random vector with
probability density function P (I0).

We are interested in determining the sensitivity of the
outputs Yt, at each time interval in Eq. (4) to variations of
each disturbance group Ai,t = [ai,1, · · · , ai,t], i = 1, · · · , p,
noting also that the behaviour of nonlinear systems may de-
pend strongly on the initial conditions. For this situation, we
cannot use the ANOVA-like decomposition in Eqs. (1) and
(2) directly since the initial conditions must be considered
within the variance decomposition. Using the well-known
variance decomposition theorem [20], we can decompose the
variance of Yt, t = 1, 2, ..., n as:

Var[Yt] = EI0
[VarAt

[Yt|I0]] + VarI0
[EAt

[Yt|I0]] (5)

where At = [A1,t, A2,t, ..., Ap,t] denotes all of disturbances
entering the system from time 1 to time t. EI0

[·] and VarI0
[·]

denotes the expectation and variance of [·] with respect to I0

respectively. The second term on the right-hand side of Eq.
(5) is the fractional contribution to the output due only to
the uncertainties of the initial conditions. The first term in
the right-hand side of Eq. (5) is the variance contribution to
the output due to the disturbances At = [A1,t, A2,t, ..., Ap,t]
with initial conditions uncertainty. From Eq. (5), it is straight-
forward to obtain Var[Yt] ≥ EI0

[VarAt
[Yt|I0]]. The special

situation, Var[Yt] = EI0
[VarAt

[Yt|I0]] will be discussed in
the following paragraphs.

The conditional variance given initial conditions I0,
VarAt

[Yt|I0], can be decomposed directly using the ANOVA-
like decomposition method as:

VAt
(Yt|I0) =

∑

i

VAi,t
|I0 +

∑

i

∑

j>i

VAi,tAj,t
|I0 (6)

+ · · · + VA1,t···Ap,t
|I0

where

VAi,t
|I0 = VAi,t

(E(Ai,t)′(Yt|Ai,t, I0))

VAi,tAj,t
|I0 = VAi,tAj,t

(E(Ai,tAj,t)′

(Yt|Ai,t, Aj,t, I0)) − VAi,t
|I0 − VAj,t

|I0

... (7)
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where the index (Ai,t)
′ stands for “all At = [A1,t, · · · , Ap,t]

but (Ai,t)” – that is, complementary to (Ai,t).
The variance decomposition with consideration of the

initial conditions can be obtained by simply calculating the
expectation of the conditional variance decomposition in Eq.
(6) with respect to the initial conditions I0. This procedure
is not necessary if the initial conditions have, or can be
approximately assumed to have, a linear relationship with
the output Yt . The variance decomposition can be calculated
with the results of the conditional variance decomposition in
Eq.(6) based on the mean values of initial conditions. Further
information about this topic can be found in [21]. Since the
ANOVA-like decomposition method is model independent,
using this method has the advantage that the the nonlinear
system model need not be known.

Special case:
If the stochastic process in Eq.(4) is a geometri-
cally ergodic Markov chain, the variance decom-
position in Eqs. (4) can be succinctly obtained by
applying the ANOVA-like decomposition method.
The criteria guaranteeing a Markov chain to be
geometrically ergodic can be found in [13, P. 127].
If the stochastic process in Eq. (4) is a geometri-
cally ergodic Markov chain, then given the initial
conditions I0 = [y∗

0 , a∗

1,0, · · · , a∗

p,0] there exists a
limiting probability as

lim
t→∞

P (Yt|I0) = π ≥ 0 (8)

The limiting probability π is independent of the
initial conditions.
Since for a geometrically ergodic Markov chain,
EAt

[Yt|I0] is equal to a constant value for
any initial conditions for t → ∞, the term
V arI0

[EAt
[Yt|I0]] in Eqn. 5 is zero. The limiting

variance of output Yt now simplifies to

Var[Yt→∞] = EI0
[VarAt

[Yt→∞|I0]] (9)

Since the output Yt→∞ is independent of the initial
conditions I0, Eq. (9) can be written as:

Var[Yt→∞] = VarAt
[Yt→∞|I0] (10)

The results of variance decomposition using the method
in Eq. (6) will not depend on the initial conditions. A finite
series of m memory terms, is used for the variance decom-
position. Since the polynomial NARMA models are most
often used to represent nonlinear systems, auto-correlation,
cross-correlation and cross bi-correlation between output and
disturbances can be used to find a suitable m.

B. Estimation Methods for V arAt
[Yt|I0]

Monte-Carlo (MC) techniques are one way to bypass
the intractability of analytically computing the variance de-
composition for Eq. (6) for general nonlinear time series,
[22, 23].

Efficient numerical methods are required for large scale
problems [24]. The FAST [25, 26] and Sobol’s [27] meth-
ods have been developed to cope with this dimensionality

problem. Further details on the FAST methods used in this
approach can be found in [10].

III. SIMULATION EXPERIMENTS

This section presents two simulation experiments to show
the effectiveness of the proposed strategy. The first demon-
strates the variance decomposition for a system with random
coefficients, while the second example illustrates the case
where two linear stochastic terms are added to a nonlinear
Volterra model.

A. A Random Coefficient Autoregressive Model

Consider the first order random coefficient autoregressive
RCA(1) model:

Yt = (α + a1,t)Yt−1 + a2,t (11)

where a1,t, a2,t are i.i.d. normally distributed with mean zero
and variance σ2

1 , σ2
2 , independent of initial conditions Y0 and

α is a real constant. Using the criteria given in [13], α2 +
σ2

1 < 1 is a sufficient condition for model (11) to be ergodic.
The infinite solution of Yt is given by:

Yt =

∞∑

j=0

πja2,t−j (12)

where π0 = 1, and

πj =

j−1∏

i=0

(α + a1,t−i), j = 1, 2, · · · (13)

Letting τ = α2 + σ2
1 < 1, it is straightforward to show:

E[Yt→∞] = 0 and Var(Yt→∞) =
σ2

2

1 − τ2
(14)

Using the method in Eqs. (1) and (2), the analytical
solution for the variance decomposition at time t → ∞ is:

V1 = 0, V2 =
σ2

2

1 − α2
, V12 =

σ2
1σ2

2

(1 − α2)(1 − τ2)
(15)

Using the model Eqn. 11 with parameter α2 = 0.6, and
Eqn. 15 with parameters , σ2

1 = 0.3 and σ2
2 = 0.4 gives

theoretical values for the variance decomposition V1 =
0, V12 = 0.625 and V12 = 0.2492.

Since this example is initial condition independent accord-
ing to the criteria [13], Y0 is set to zero. Since the initial
conditions include terms Yt−1, a1,tYt−1, and a2,t, t ≤ 1,
the auto-correlation ryy , cross-correlation rya2

and cross
bi-correlation tyya1

defined in Section II-A are estimated
using 500 realizations. The results are shown in Fig. 2. It
shows that this RCA(1) model’s memory can be adequately
approximated to be 10 effectively saying that the effects of
the initial conditions Yt−1, a1,t, Yt−1, and a2,t, t ≤ 1 on the
present output value Y10 would be insignificant.

Now the infinite series described in Eq. (12) can be
truncated to

Yt→∞ ' Y10 =
m=10∑

j=0

πja2,t−j (16)
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Fig. 2. Auto-correlation, cross-correlation and cross bi-correlation for the
RCA(1) model, Eqn. 11, under consideration. This leads us to choose 10
as a suitable memory length for the nonlinear model.

where π0 = 1 and

πj =

j−1∏

i=0

(α + a1,t−i), j = 1, 2, · · · (17)

The variance of Y10 is:

Var(Y10) =
(1 − τ20)σ2

2

1 − τ2
(18)

For our simulation, Var(Y10) = 1.148 is accounting for
97.6% of the limiting variance Var(Yt→∞) = 1.176.

To decompose the variance for Y10, we use the different
choices of frequencies shown in Table I. Ns denotes the
sample size used in FAST. Fig. 3 shows an example of the
extended FAST method applied to the RCA(1) model with
finite memory 10. One hundred estimates, obtained using
different starting points, of the partial and total variances
are computed. The boxplots of their summary statistics, for
each disturbance group, are plotted against the sample size
Ns. The estimates converge to the analytical values and
the precision of the estimates increases, as the number of
samples (or the spread of frequencies) increases.

TABLE I

SETS OF FREQUENCIES OBTAINED BY USING THE AUTOMATED

ALGORITHM

Sim. High Complementary Freq.
No. Ns Freq. Max Low Freq. Step
1 65 8 1 {1,1,1,1,1,1,1,1,1,1} 0
2 641 80 10 {1,2,3,4,5,6,7,8,9,10} 1
3 1217 152 19 {1,3,5,7,9,11,13,15,17,19} 2
4 2369 296 37 {1,5,9,13,17,21,25,29,33,37} 4

The results of variance decompositions for Yt, t =
1, · · · , 15 are plotted in Fig. 4. It shows that the estimates
of the variance decomposition results appears to converge to
the true values when the time horizon increases.
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Fig. 3. Boxplots of 100 estimates of the variance decomposition for the
RCA(1) model; analytical values of the partial and total variances are shown
by dotted lines.
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Fig. 4. Boxplots of 100 estimates of the variance decomposition of Yt, t =

1, · · · , 15 for the RCA(1) model ; analytical values of the partial and total
variances t → ∞ are shown by dotted lines.

B. A Volterra Model

This example illustrates the variance decomposition for
a nonlinear Volterra model subjected to two additive linear
disturbances as shown in Fig. 5.

The model can be expressed as:

Yt =0.2Ut−3 + 0.3Ut−4 + Ut−5 + 0.8U2
t−3 + 0.8Ut−3Ut−4

− 0.7U2
t−4 − 0.5U2

t−5 − 0.5Ut−3Ut−5

+ D1,t + D2,t (19)

where the disturbance D1,t is the measured disturbance
which is in the form of an ARMA(2,0,0) process:

D1,t =
a1,t

1 − 1.6q−1 + 0.8q−2
(20)

and the second disturbance D2,t is the unmeasured distur-
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Fig. 5. The nonlinear closed loop system with two sources of disturbances

bance which can be represented as an AR(1) process:

D2,t =
a2,t

1 − 0.9q−1
(21)

a1,t and a2,t are the i.i.d. normal variables with zero mean
and variance 0.03 and 0.05 respectively. The variances of the
disturbances D1,t and D2,t are consequently equal to 0.1997
and 0.2632 respectively, and the disturbances D1,t and D2,t

are uncorrelated. A PI controller Ut = − 0.3−0.2q−1

1−q−1 (Yt) is
used to close the loop. A closed-loop data set consisting of
five hundred samples for D1,t, D2,t, Ut and Yt is shown in
Fig. 6.
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Fig. 6. 500 samples of the closed-loop Volterra system subjected to
measured and unmeasured disturbances

1) Variance Decomposition with Initial Conditions I0 =
0: Since it is impossible to obtain an analytical solution for
the variance decomposition, a Monte Carlo (MC) method
is used to estimate the partial / total variances. Based on
the initial conditions I0 = 0, the variation of output Yt,
t = 1, 2, . . . , 40 is shown Fig. 7. From Fig. 7, we can observe
that the variations of output Yt between time t = 20 and time

t = 40 are not significantly different leading us to choose an
appropriate memory length of 20.
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Fig. 7. The box plots of output Yt for the first 40 samples. This indicates
20 is a suitable memory length for the model expressed by Eqn. 19.

The procedures for estimating the partial variance V1 is
shown in the following steps: i) one sample set of A1

1,t =
[a1,1, ..., a1,20] are generated, ii) the other sample set of
A1

2,t = [a2,1, ..., a2,20] are generated, the output y1
20 is cal-

culated, iii) the step ii) is repeated for two hundred times to
collect the output yi

20, i = 1, ..200. iv) estimate the condition
mean E(yt|A

1
1,t) using the output data from step iii), v)

repeat steps i)-iv) two hundred times and estimate the partial
variance V1 using two hundred means. The same procedures
must be repeated for estimating the partial variance V2.
The estimates of the partial and total variances are listed
in column 2 (The values in parentheses are the standard
deviations of the estimates) of Table II.

TABLE II

ESTIMATES OF PARTIAL/TOTAL VARIANCE USING MC AND FAST

METHODS WITH CONSTANT INITIAL CONDITIONS

V1 V2 V12 V

MC 0.85 0.21 0.03 1.08
FAST 0.84 (0.71) 0.19 (0.17) 0.03 (0.10) 1.06 (0.76)

The partial and total variances are also estimated using
the FAST method with a transformation function for a
normal variable. The high frequency of 16 is assigned to
the unmeasured disturbance D2,t and a low frequency of 2
to the measured disturbance D1,t. The sample size is 129
for each estimation. The estimation is repeated two hundred
times. Unlike the MC methods where he estimations must
be done individually, the partial and total variances can be
estimated simultaneously from the FAST method for the two
factor case. The estimates of the partial and total variances
using the FAST method are also listed in column 2 of Table
II (The values in parentheses are the standard deviations of
the estimates).

The fact that the calculation load for the FAST scheme
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was approximately 25 times less has a large impact on the
following simulation which includes the consideration of
initial condition uncertainty. The comparative box plots of
the quality estimates are shown in Fig. 8.
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Fig. 8. The comparative box plots of the quality estimates of partial/total
variance using the FAST method

A sample of size (200 × 200 × 20) is used to estimate
the V1 using the MC method. The first 200 samples for
A2,20 are used to estimate EA2,20

[Y20|A1,20] and the second
200 samples are used to estimate VA1,20

(EA2,20
[Y20|A1,20]).

The third sample size 20 is from memory length 20. The
estimates of the partial and total variances using the MC
method are also listed in column 2 in Table II. The estimate
of V1 using the FAST method with only (200 × 129 × 20)
sample size is close to the MC estimate. The sample size
for FAST method means: 129 samples for FAST method, 20
is the memory length, and 200 is the repeat number for the
FAST method. Furthermore, with the same sample set, the
FAST method can compute all values of V1, V2, V12 and
V at the same time. The new sample set is required by the
MC method for each new estimate of V2, V12 and V . The
MC method is computationally more expensive in terms of
model evaluations.

2) Variance Decomposition with Uncertain Initial Condi-
tions I0: For this simulation, the burn-in period is 30. The
sample size (200×200×200×20) is used to estimate the V1

using the MC method. The first sample size 200 is for the
estimation of the partial variance V1 with consideration of
initial condition uncertainty EI0

[VA1,20
(EA2,20

[Y20|A1,20])].
The rest sample sizes have the same definition used in
the above simulation. Similarly, the sample size (200 ×
200 × 129 × 20) is used for the FAST method. The effects
of the uncertainties of the initial conditions on the output
variance decomposition are listed in Table III. While the
FAST strategy is around 16 times faster in this example, this
comes at a slight increase in the uncertainty of the variance
estimates. The comparative box plots of the quality estimates
using the FAST method are shown in Fig. 9.

Since the expected values of the initial conditions
are equal to zero, the results of variance decomposi-
tion with constant initial conditions listed in Table II
can be considered as the variance decomposition of the
expected values of the initial conditions for example

TABLE III

ESTIMATES OF PARTIAL / TOTAL VARIANCE USING MC AND FAST

METHODS WITH UNCERTAIN INITIAL CONDITIONS

V1 V2 V12 V

MC 0.73 0.21 0.07 1.01
FAST 0.73 (0.64) 0.21 (0.18) 0.08 (0.08) 1.01 (0.71)

V1 V2 V12 V

0

1

2

3

4

5

6

E
st

im
at

es
 o

f V
ar

ia
nc

es

Partial / Total Variances

Fig. 9. The comparative box plots of the quality estimates of partial/total
variance with the uncertain initial conditions using the FAST method.

VA1,20
(EA2,20

[Y20|(A1,20, E[I0])]. The results in Table III
are the expected values of the initial conditions of the
variance decomposition EI0

[VA1,20
(EA2,20

[Y20|A1,20])]. In
general these two calculations are not equal. The results
in Table II and Table III illustrate these inequalities. The
differences between these two terms may or may not be
significant, it will depend on the model structure and dis-
turbance statistics. The differences between these two terms
with different time horizons are listed in Table IV. The data
in column 3 in Table IV are obtained using the MC method
and the data in column 4 are calculated using the FAST
method with the same parameter values such as frequency
used in the previous simulation.

TABLE IV

ESTIMATES OF PARTIAL / TOTAL VARIANCE OF THE CONSTANT INITIAL

CONDITIONS AND THE UNCERTAIN INITIAL CONDITIONS FOR THE

DIFFERENT TIME HORIZONS

Horizon Variance Constant IC Uncertain IC
t = 10 V 0.82 0.47

V1 0.61 0.29
V2 0.18 0.16
V12 0.03 0.02

t = 20 V 1.09 1.01
V1 0.85 0.73
V2 0.21 0.21
V12 0.03 0.08

t = 30 V 1.15 1.17
V1 0.85 0.86
V2 0.19 0.19
V12 0.11 0.12

From Table IV, we can see that the differences between
these two terms will become smaller as the time horizon
increases for this simulation example. An interesting phe-
nomena in Table IV is that the conditional output variance
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given constant initial conditions is much less than the output
variance for the output Y10 case. It means that the results
of the variance decomposition based on uncertain initial
conditions may be significantly different from the results
based on constant initial conditions.

IV. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper has provided a preliminary analysis of variance
decomposition for MISO nonlinear processes. We have ad-
dressed the case where there is no cross-correlation between
the disturbances within the nonlinear systems which can
be represented by NARMAX models. We have shown that
the variance decomposition of the nonlinear time series and
nonlinear stochastic systems can be estimated using the
ANOVA-like decomposition in Eq. (1). Since for nonlinear
stochastic/dynamic systems the variance decomposition is
now dependent on the initial conditions, a modified ANOVA-
like decomposition method is proposed to cope with the ini-
tial condition uncertainty. Applications of the methodology to
the examples indicate that this approach gives very credible
estimates of the variance decomposition.

B. Future Work

The variance decomposition for the nonlinear dy-
namic/stochastic systems and time series discussed in this pa-
per is based on the assumption that the different disturbances
are uncorrelated. This assumption is not always applicable in
practice. The investigation into the effects of cross-correlated
disturbances on analysis of variance for nonlinear MISO
systems may be necessary for the extension of nonlinear
variance decomposition problems.
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