
Auto -Code Generation for
Fast Embedded
Model Predictive Controllers

Jonathan Currie, Arrian Prince-Pike &
David I Wilson

AUT University

2 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Our Motivation for this Research

ÅModel Predictive Control (MPC) is the most successful
advanced control strategy in the process control world

ÁOil and Gas, Chemical Plants, Utility Systems

ÅWhile PID controllers are ubiquitous in a range of
electronic and embedded hardware, they have several
short comings:

ÁDifficult to tune and control multivariable systems

ÁDo not handle plants with significant dead time

ÁDo not respect system constraints

ÅTherefore our aim is provide a simple implementation
framework for MPC for an embedded system, bringing
the benefits of MPC to small, high speed systems

3 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

A Quick MPC Overview

4 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

A Quick MPC Overview

ÅAdvantages of MPC

ÁMultivariable system? ς Easy

ÁNon-square system? ς No problem

ÁInput or output limits? ς Add them to the controller

ÁTuning ς Simple and Intuitive

ÅDisadvantages

ÁA process model is required (linear state space)

Á/ƻƳǇǳǘŀǘƛƻƴŀƭƭȅ ŘŜƳŀƴŘƛƴƎΧ

5 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Optimal Control ð At a Price!

ÅModel Predictive Control (MPC) is an Optimal controller

ÁBut unlike LQR / LQG considerable online
computation is required

ÁThis is due to allowing process constraints

ÅAt every sampling instant a constrained Quadratic
Program (QP) is solved

ÁIt is not unusual to have 10+ decision variables and
150+ constraints

ÅSolving the QP online requires both computing power and
memory storage

6 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

The jMPC Toolbox

7 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Embedded MPC

ÅThere is a big difference to solving MPC on a desktop
computer to an embedded platform!

ÁThink MHz vs GHz, KB vs GB, mA vs A and mm vs cm!

Å Our long-term aim is to implement MPC on an RC
helicopter, therefore we need to take the following into
consideration when developing an Embedded MPC:

ÁPhysical size

ÁPower consumption

ÁClock speed

ÁMemory size

ÁHardware arithmetic

ÁPeripherals and I/O

8 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Embedded Targets

Å200 MHz Microcontroller

Å260KB RAM

Å32bit FPU

ÅNo OS

ÅUSD$109.00

Å1GHz ARM Cortex A9

Å1GB RAM

Å32bit FPU

ÅUbuntu 12.04

ÅUSD$174.00

Texas Instruments C28343 PandaBoard

9 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Auto -Code Generation

ÅTo generate an
embedded MPC
controller is one line
using MATLAB and the
jMPC Toolbox

ÅOnce the controller and
simulation environment
has been setup, simply
call embed() to
generate all required
source and testing files

ÅThe code generation
process takes < 50ms

%Build jMPC Object
MPC1 = jMPC(Model,Np,Nc,uwt,ywt,con)

%Build Simulation Options
SIM1 = jSIM (MPC1,Plant,T,setp)

%Create Embedded MPC Controller
bytes = embed(MPC1,SIM1)

Constants.c

Math.c

jMPCEmbed.h

HIL.c

QP.c

Engine.c

testQP.c

testMPC.c

mexTestQP.c

(Optional)

10 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Code Verification

ÅIn order to verify the
generated code performs as
required, up to 4
automatically generated
testbench files can be
created

ÅTwo testbenches allow
verification using MEX
interfaces, on the
development computer

ÅTwo testbenches allow
verification on the target
device, testing both the QP
solver and MPC algorithm

11 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Processor In the Loop (PIL) Implementation

ÅPIL allows the controller to run on the actual hardware,
while the process is run as a simulation on a test
computer

ÅCommunication is achieved via a USB Serial interface

12 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Case Study 1: Rotating Antenna

ÅThe first case study concerns a
rotating antenna assembly,
driven by an electric motor

ÅThe control objective is to
control the antenna position to
allow it to follow a moving
target

ÅA linearized dynamic model of
the system is used to create
the controller, as well as the
simulator plant

13 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Rotating Antenna Results

ÅImplemented on the TI
board a sampling rate of
over 1.6kHz is achieved

ÅThe controller is
implemented with
Np = 10, Nc = 3 and
constraints on the input
voltage

ÅNote only during periods
when constraints are
active is the QP solver
required

14 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Case Study 2: Inverted Pendulum

ÅThe second case study is an
inverted pendulum on a linear
cart

ÅThe control objective is to be
able to position the cart without
the pendulum falling over

ÅUsing the jMPC Toolbox the full
nonlinear model can be
linearized in one line of code

ÁThe linearized model is then
used for the controller, and
nonlinear model for plant
simulations

15 Auto-Code Generation for Fast Embedded Model Predictive Controllers

M2VIP 2012 Auckland

Inverted Pendulum Results

ÅThe full nonlinear model
is simulated using a ODE
solver, with
measurements subjected
to Gaussian noise

ÅThe controller is
implemented on the TI
board at 20Hz using
Np = 25, Nc = 5.

ÅSampling rates of 50Hz
are achieved, while
maintaining control of
the pendulum

