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Abstract

Estimation and control applications in the chemical process in-
dustry require discretisation of continuous-time process models
that are usually available from first principles. Simple explicit
techniques for discretisation, have rarely been employed for the
fear of introducing excessive error in the discrete model. In our
view such techniques suffice for most chemical engineering appli-
cations given the prior inaccuracy in the continuous-time model
and the choice of sampling frequency dictated by the measure-
ment hardware, the plant dynamics and the needs of the estima-
tion or control algorithms. In this work, the Euler and second
order Runge-Kutta procedures are shown to provide sufficient ac-
curacy for a wide range of chemical engineering applications. Use
of these techniques is recommended for practically all explicit dis-
cretisation needs, at least as a first step to establish possible need
for more complex alternatives.

Keywords: discretisation, chemical process models,
sampling, stability

1. Introduction

The chemical process industry uses continuous-time dy-
namic process models in a variety of applications includ-
ing design and control. This work is concerned with the
discretisation procedure employed in view of the end-use
of these types of models, and the subsequent solution of
the ODEs. A critical issue is the choice of the discretising
step.

The motivation for this look into discretisation pro-
cedures stemmed from our investigation into estimation
and optimisation for batch reactors. Crucial for success
for these types of applications is to perform the integra-
tion rapidly whilst maintaining appropriate accuracy. Batch
chemical processes are characterised by significant nonlin-
ear behaviour and continually changing operating condi-
tions. Thus the nonlinearities need be preserved during
integration, but the computational demands using library
integration routines is prohibitive.

This paper argues that, compared to other fields, the
chemical industry uses relatively poor models with high un-
certainties and, consequently, relatively relaxed error tol-
erances. In this environment, the simple, fast, but some-

what inaccurate, explicit low-order Runge-Kutta schemes
are shown to be appropriate. The infiltration of additional
error is more than compensated by the gain in computa-
tional speed. In addition, the explicit nature of the scheme
can be exploited further for applications in control, estima-
tion and optimisation particularly in view of the capabilities
of symbolic manipulators.

Section 2. outlines the need for explicit discretisation
of process models used typically within the chemical in-
dustry for applications such as control, estimation and opti-
misation and reviews the current practice highlighting why
this is inadvisable given the nature of these applications.
Section 3. presents two simple explicit integration schemes
to achieve these needs while avoiding the drawbacks of
the current practice. The feasibility of these schemes is
assessed in section 4. using several examples covering an
array of published models. Conclusions are presented in
section 5..

2. Need for discretisation

Dynamic process models encountered in the chemical en-
gineering field are typically systems of nonlinear Ordinary
Differential Equations (ODEs) usually comprising of first-
principle relations and heuristics, of low order, and with no
tractable analytical solution. This work restricts the consid-
eration to typical process models suitable for use in estima-
tion, on-line optimisation or control in an industrial envi-
ronment. Therefore we deliberately exclude large dimen-
sional systems, sparse systems, excessively stiff systems
and differential algebraic systems. These problems require
specialised solution techniques and software.

Most chemical engineering models were developed
originally as continuous models, but there are at least three
basic categories that require, or benefit from, a discrete
model.

Discrete model required as input
Often an application requires a discrete model as an input
to some other algorithm. One example is predictive control
where the current input is related to some future desired
state. If the model is explicit, one may be able to invert this
to create a corresponding explicit control law. If this is not
the case, as in the case of a library integration routine, then
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this complicates the inversion procedure.
Repetitive integration

The second main motivation for explicit discretisation is
where the end-use requires repetitive integration so min-
imising computational speed is a primary objective. This
can be further subdivided in two categories: plain itera-
tion of the integration step such as in a simulation or in
operator training, or a time critical real-time application,
and where the explicit nature of the model can improve the
performance of a higher level application such as on-line
optimisation.

Contrary to popular belief, library routines are not
always as computationally efficient as the simple explicit
schemes given chemical engineering applications. While
efficient integrating schemes may be able to take large
steps, with only a few derivative function evaluations per
step, consistent with a user-specified performance, this ad-
vantage is lost if the optimised step is larger than the exter-
nally imposed sample time. Furthermore multistep meth-
ods are not self-starting so incur a penalty at every start and
finish of the externally imposed step. For these reasons,
for the applications considered here, generally accepted li-
brary routines for general purpose numerical integration of-
ten perform poorer than expected.

Software availability
Finally, a simple one step explicit discretisation of the
model is the easiest to implement and maintain on cur-
rent industrial distributed control hardware. If library
routines are called for, they are usually executed on a
networked auxiliary workstation where often, the DCS-
computer communication link further increases computa-
tion time, and decreases reliability. [1] notes that even the
current OPC link incurs a 5 second penalty.

Given these needs for explicit discrete models, and the
unique environment of the applications, it is worthwhile to
critically analyse the current practice of approaching esti-
mation, optimisation and control problems.

2.1 Current practice

For a justification of why the current and convenient prac-
tice of employing library integration routines (such as [2]
or [3]) are often overused, it is necessary to look in more
detail at the type of processes, and environment common in
applications of control, estimation and optimisation in the
chemical industry.

Firstly, relatively poor models with high levels of un-
certainty are used in applications where moderately large
errors are acceptable. These modelling errors are often un-
derstated or ill-characterised in much chemical engineering
literature and thus there seems a large discrepancy between
academic research simulation studies and actual industrial
feasibility. There is a danger that over-enthusiastic re-
searchers develop control algorithms with stringent model
requirements that simulate perfectly, but fail in industrial
tests.

Despite the maturity of linear control invariably how-
ever the underlying dynamics are nonlinear leading to
model/plant mismatch. For example [4, p219] report that
the controller gains that gave the best simulated perfor-
mance using a 5 state linear model were one order of mag-
nitude too high to be implemented on the pilot equipment.
Three decades ago, [5] concludes that applying methods
developed elsewhere to chemical processes that differ so
significantly mean that these solutions have little practical
value. His recommendation then was to apply simple tech-
niques to low order models and we would argue that this
advice is still relevant today.

Nevertheless many practitioners avoid the crude Euler
type integration techniques for fear of introducing exces-
sive error, or excessive computation time due to the small
stepsize requirement. It is worth noting that computational
speed and storage is still at a premium in typical indus-
trial processing plants overburdened with supervisory du-
ties coupled with crude low level operating environments.

In summary, the current practice is divided either to
use linear models, that possibly do not adequately reflect
the nonlinear process, or overcompensate by using state of
the art numerical library routines that are computationally
inefficient, unwieldy, and not explicit.

3. Explicit discretisation

Assuming we desire to retain the underlying nonlinearities,
we wish to discretise initial value ODES of the form

dx

dt
= f(x,u, t), x(t = 0) = x0 (1)

where in the control context, the input, u, is assumed
bounded and constant over the period of integration (the
sample time), and thus for the purposes of this analysis,
the input may be neglected. Most numerical analysis texts
for engineering type applications advise that a 4th order
Runge-Kutta (RK) ODE integrator including various im-
provements is adequate for all but the most demanding
problems. We argue that even this algorithm is an overkill
for most chemical engineering applications and low order
explicit RK ODE solvers are more suitable.

The Euler scheme approximates the derivative as a
first order finite difference, advancing the state vector xi

over one time step h
def
= ti+1 − ti to xi+1 as

xi+1 = xi + h f(xi, ti) (2)

This algorithm is first order accurate and requires one func-
tion evaluation per step. Most practitioners discourage its
use because of stability problems at larger step sizes and
relatively poor accuracy at a given step size. A second or-
der variant, RK2,

xi+1 = xi + h f

(

xi +
h

2
f (xi, ti) , ti +

h

2

)

(3)

has similar stability restrictions as the Euler scheme, but
has improved accuracy. Both Eqns 2 and 3 are explicit,



simple self starting one step integrators. For most chem-
ical engineering processes, the accuracy is improved with
decreasing step size.

With such trivial discretisation methods (as opposed
to say methods proposed in [6]), we have the option, if we
desire an eventual linear discrete model, to either linearise
first, then perform an (exact) discretisation, or discretise
first using either Eqns 2 or 3 and then linearise by a Taylor
series. In general the final expressions are different, and it
is worth noting that the former case, with its exact discreti-
sation step, was not necessarily the most accurate.

3.1 Sample time and integration step size

The potentially most concerning aspect of using the first or
second order scheme is not their accuracy, but their stabil-
ity. The maximum allowable step size to still maintain sta-
bility when integrating ẋ = Ax is a function of the eigen-
values (λ) of A or the Jacobian for a nonlinear system. For
the Euler scheme to be stable when applied to a single vari-
able process, the step size, (h), must be chosen such that

|1 + hλ| ≤ 1 (4)

while for the second order scheme, the stability region is
defined by
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∣

∣

≤ 1 (5)

For multivariable processes, each eigenvalue is tested in
turn, and the smallest resulting stepsize is the stability limit,
since the eigenvalue with the largest magnitude is not nec-
essarily the one that contributes to the limiting step size. In-
deed it is possible that different eigenvalues are governing
depending on the integrator scheme. Given a system with
the 4 eigenvalues −0.2±0.75i,−2±0.75i, then the largest
magnitude governs the maximum allowable step size for
RK2 scheme, but the other smaller eigenvalue dictates the
maximum allowable step size when using the first order
Euler scheme.

If stability governs one upper limit of the stepsize,
then sample time selection provides another practical limit.
For these trivial integration schemes to be attractive, this
maximum allowable stepsize should be of the same order of
magnitude (or larger) than the employed sample time. De-
pending on the application, various recommendations for
the sample time selection are given ranging from 0.1–0.01
τ where τ is the open loop dominant time constant, (see
e.g. [7] or [8, p37]). Naturally there are complications
given nonlinear systems, batch processes with integrating
states and so forth.

Aside from considerations of process dynamics, most
industrial process-control hardware cannot readily sample
faster than about 100 ms−1, nor is there often any advan-
tage to sample slower than about 1–5 minutes−1 when us-
ing continuous sensors. Therefore sampling rates of the
order of s−1 irrespective of the process are common, [9,
p339].

In practice, we chose a sample rate based on the pro-
cess dynamics such as 1–10% of the dominant time con-
stant. If the system has integrators, then we selected the
smallest nonzero eigenvalue as the dominant time constant.
If that proved unacceptable, then one must resort to choos-
ing the sampling rate based on some process specific reason
such as hardware cost, batch time, or engineering judge-
ment.

Many chemical engineering processes are, or are very
close to being overdamped. With this approximation, one
can relate the appropriate sampling time to the maximum
allowable step size. Since the sampling recommendation
is based on the dominant time constant (smallest λ), and
the stability is based on the largest λ, then the stiffness (ra-
tio of eigenvalues) is an important consideration. Roughly
to maintain stability of an explicit RK scheme with a step
size the same as the sample rate (which is 0.1–0.01τ ), then
stiffness should be less than 20–200.1

In summary, this work makes the assumption that
the explicit schemes are attractive only if the step size to
achieve some reasonable tolerance (say 1% error) is in the
same order of magnitude as the sampling rate. In other
words, the stiffness of the problems of interest, should be
less than around 200.

4. Example chemical processes

To support the claims made in sections 1. and 2., we have
selected 15 well known and oft cited systems from the
chemical engineering literature. For each of these systems,
open loop simulation runs employing each of the two ex-
plicit algorithms from section 3. are compared to that em-
ploying a reliable library integration routine, namely algo-
rithm DC03 from the Harwell library of codes, [10]. Where
possible, runs in the original publication are closely fol-
lowed. For originally closed-loop examples, a preset in-
put was used to approximate the closed-loop run. The aim
of these simulations is to verify that the simple explicit
schemes are applicable across a variety of typical process
models using appropriate integration steps.

An overview of the processes citing the original ref-
erence, the type of chemical process, the size (number of
states) of the system is given in Table 1. Implementation
details such as the sample time (possibly only units), inte-
gration algorithm, and hardware used in the original study
are given if known. Space precludes results for all exam-
ples, but two representative processes are given starting in
section 4.1 while further details are given in [11].

To aid the performance comparison, the states are nor-
malised using a nominal range (xrange) and a nominal mid-
point (xmid) giving a dimensionless state that roughly lies
between ±0.5. The error for a particular step size between

1Setting the maximum allowable step size equal to the recommended
sample rate gives

2

|λmax|
= 0.1

1

|λ min|
(6)



Table 1. A summary of the example chemical processes

stepsize at 1% error
Application & Author dim. h

λmax

λmin

hmax h
? RK2 Euler

ε̄ εmax ε̄ εmax

CSTR, Seinfeld (1970), [12] 2 s 12 6.6 0.6 > 6 5.5 1 0.5
CSTR (Sodium acetate), Litchfield et al (1979), [13] 3 30 s 6.8 42 1.4 20 10 11 2
CSTR, Morningred et al (1992), [14] 2 0.1min 2.4 0.42 0.005 0.25 0.1 0.05 0.005
CSTR fermentation, Henson & Seborg (1991), [15] 3 h 74 9.9 0.1 > 8 5 2 1
CSTR (methanol), Tátrai et al (1992), [16] 3 s 250 0.73 0.9 0.6 0.3 0.6 0.1
CSTR (pH), Henson & Seborg (1991), [17] 2 0.1s 1 169 9 44 9 9 5

Fed-batch (Bio), Rosen & Luus (1991), [18] 5 h 80 0.11 0.003 > 0.1 > 0.1 0.03 0.01
Batch (Bio), Caminal et al (1987), [19] 3 min 65 100 0.8 38 25 8 4
Batch (pulp), Venkateswarlu & Gangiah (1992), [20] 3 h 1 1.25 0.03 0.4 0.2 0.2 < 0.05

Batch PVC, Kiparissides & Shah (1983), [21] 7 s ≈ 10
3 32 0.2 26 6 14 < 5

Evaporator, Newell & Lee (1989), [22] 3 1min 1.7 21 0.2 > 2 > 2 0.8 < 0.5

Fed-batch crystalliser, Wilson (1990), [23] 6 0.005h 820 0.048 0.2 0.038 0.02 0.03 0.004
Furnace, Coggan & Noton (1970), [24] 3 0.1 h 7 0.2 0.007 0.09 0.05 0.05 0.01
Arc-furnace steel refining, Woodside et al (1970), [25] 2 h 50 0.5 0.12 > 0.2 > 0.2 0.08 0.03
Chaotic (autocatalytic), Lynch (1992), [26] 3 – 10

4 Inappropriate

the normalised RK results x
RK
n and the Gear results x

G
n )

is characterised in two ways: the maximum instantaneous
absolute error εmax, and an average absolute error over the
run,

ε̄ =
1

tf

∫ tf

0

|xG
n − x

RK
n | dt (7)

From the ‘exact’ (Gear) profile, the eigenvalues of the lo-
cally linearised system are calculated to indicate the ex-
tent of nonlinearity and stiffness. The maximum and av-
erage state errors using the RK2 (solid) and Euler (dashed)
schemes are plotted against the integration step size. A rea-
sonable error acceptance level (considering the uncertainty
in the actual models used) is ≈ 1%. The proposed scheme
is considered successful if the error is less than 1% using a
step length that can serve as an appropriate sample time.

4.1 A batch bio-reactor

An example of enzymatic hydrolysis of cellulose with en-
zyme deactivation in a bio-reactor is given in [19]. The
three state model is

dCa

dt
= −

rmCa

Km(1 + Cb/Ki) + Ca

(8)

dCc

dt
=

r′mCb

K ′

m(1 + Cc/K ′

i) + Cb

(9)

dCb

dt
= −

dCa

dt
+

dCc

dt
(10)

where the deactivation is explicitly dependent on time with
a grace period and a deactivation period as

t < 400, r′m = r0′

m (11)

t > 400, r′m = r0′

m exp
(

−1.5 · 10−3(t − 400)
)

(12)

This system is stable, and the stiffness ranges from 2–11.
The maximum stable step size 100–400 min is larger than
the recommended 0.8–8min based on the dominant time
constant. The RK2 scheme will achieve the 1% error crite-
ria with any recommended sampling rate, while the Euler’s
performance is borderline.

4.2 A batch pulp digester

Venkateswarlu and Gangiah, [20], describe a low order
model for delignification in a Kraft pulping digester.

dC

dt
= −q1 exp

(

b −
a

T

)

CL (13)

dL

dt
= −q2 exp

(

b −
a

T

)

CL (14)

d[CO]

dt
= q3

dL

dt
(15)

The states are alkali, lignin and carbohydrate concentra-
tions. The parameters q1–q3 were fitted to experimental
data from a laboratory scale batch digester. The input for
this system was an open loop temperature program spec-
ified as a function in time. This is system has two zero
eigenvalues, which leaves only one nonzero eigenvalue,
thus stiffness is not relevant for this example. The batch
time is quite long (10 hours), and the time constant based
sample time is 0.03–0.3 h. In practice, these are relatively
large sample times, and one would expect to use much
smaller, however pulp digesters are well known to be diffi-
cult units to control, primarily due to the lack of any good
on-line transducers. Common pseudo on-line transducers
such as kappa number meters have measurement cycles in
the order of 20 minutes. The stability limit is larger at 2–7
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Figure 1. An enzyme deactivation. Left: A nominal open-
loop trajectory at h = 0.8 (Gear —, RK2 · · · , Euler – –),
and lower, the absolute values of the eigenvalues. Right:
The average (upper) and maximum (lower) errors incurred
at different step sizes (RK2 −− ◦ −−, Euler −− ∗ −−)

hours. The RK2 scheme can achieve the required accuracy
with step sizes inside this recommended region, but the Eu-
ler scheme cannot achieve a maximum error of < 1% with
h > 0.05.

4.3 General simulated results

Table 1 summarises of the results for all the considered pro-
cesses. The approximate stiffness and maximum allowable
integrator stepsize, hmax that still preserves stability are
tabulated. The lower recommended sample time , h?, is
noted using the guidelines presented in section 3.1. The fi-
nal four columns list the stepsize at which the 2 explicit
integrator schemes, over the simulation presented, reach
the standard 1% error. A large number here indicates that
the explicit scheme can take relatively large steps, and still
meet the required accuracy.

Most problems have ratios less than 200, so one may
expect the explicit scheme to be sufficient. Actually for
some processes with stiffness > 200, the explicit scheme
is still sufficient, and these are discussed in more detail in
[11].

For our implementation, the explicit schemes only
used 5–10% of the computational load of the library rou-
tine, with the Euler scheme half that of the RK2. The order
of the average error with respect to stepsize for each of the
processes studied is approximately 1 for the Euler and ap-
proximately 2 for the RK2 scheme as expected from theory.
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Figure 2. A batch pulp digester. (Legend as for Fig. 1.)

5. Conclusions

Many reported applications of control, optimisation or es-
timation in the chemical processing industries use cumber-
some state of the art numerical techniques to integrate the
dynamic system. For some applications, this is necessary,
but for many applications particularly in on-line control or
estimation of industrial processes, the dynamic model is
small, moderately stiff with a relatively high degree of un-
certainty. For these applications, we favour the simple ex-
plicit RK2 scheme, that for reasonable time steps (roughly
equal to the existing sampling rate), the accuracy and sta-
bility is quite sufficient. The advantages of the explicit
scheme are the simple coding, fast execution and the pos-
sibility of deriving simple expressions such as analytical
partial derivatives that would otherwise require solving the
general nonlinear ODE. The disadvantage of the RK2 im-
plementation is the sometimes tedious algebra required to
obtain an explicit expression for the discrete model.

These simple explicit schemes are not a general
panacea for all problems. They are unworkable for chaotic
systems, and unsuitable for very stiff systems. One general
solution approach for excessively stiff systems is to sim-
plify the model eliminating the very fast (or perhaps very
slow) dynamics. (Often this is done during the model con-
struction stage.) With the recast problem now much less
stiff, the explicit schemes can be used.

In summary, even for nonlinear, moderately ill-
behaved, stiff systems the second order scheme represents
a good trade off between the accuracy at step sizes in the
order of the sampling rate, and complexity of implemen-
tation. The simpler popular Euler implementation is only
of borderline accuracy while the third and higher order RK



explicit schemes are too complicated to extract analytical
expressions for only marginal accuracy improvement.
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